スキップしてメイン コンテンツに移動

投稿

2月, 2020の投稿を表示しています

多項式環はモノイド環

多項式環はモノイド環だ。 一変数多項式の場合使われているモノイドは自然数 N の加法モノイドだ。 もちろん「自然数」は 0 以上の整数という意味で使っている。 多変数多項式の場合のモノイドは有限生成自由可換モノイドだ。 若干大仰に響くが、要するに自然数の直積 Nn に他ならない。 モノイド環と言うからには、多項式はこれらを基底とする有限形式和なのだが、 たとえば整数係数の自然数の和を見たらただの整数に見えてしまうので、 表示の上では「変数」または「不定元」と呼ばれる無意味なラベルを導入してモノイドの演算を乗法にする。 したがって自然数(の直積)上のモノイド環とラベル(の順序付き集合)の対が通常の意味での多項式環である。 今まで述べてきたものは(少なくとも変数部分は)可換な多項式だが、 世の中には非可換多項式というものを考えたい人もいる。 非可換多項式環はモノイドを有限生成自由モノイドに取り替えれば実現できる。 非可換多項式では「変数と係数は可換」と説明し始めることもあるが、 これは式の見た目としてはその通りだったとしても、モノイド環として考えた場合は無意味である。 そもそも係数と基底の並びは積ではない。 非可換の話はこれぐらいにして、可換な多項式環に戻ろう。 多項式には次数という数が付随する。 ひとまず一変数多項式での話を思い出そう。 係数が 0 でない項の中で、通常の自然数の大小の意味で最大の基底をその多項式の次数という。 このように定義すると一つだけ問題があって、それは零元の扱いである。 零元には係数が 0 でない項が無い。 モノイド環の積の定義から、多項式の積の次数が(係数の積が消えてしまわない限り)次数の和になる。 これを零元でも満たすようにするためにはその次数を自然数の加法に対する零元にするしかない。 が、そんなものはないので添加する。 一般には で書かれる元を N に対する零元として添加したモノイド N 、それが次数の値域となる。 多変数の場合も同様である。 元々の基底である有限生成可換モノイドに零元を添加したモノイドが次数の値域となる。 全次数といって和で代表する場合も...